
CLASS X
There will be one written paper of two hours duration

carrying 100 marks and Internal Assessment of 100

marks.

The paper will be divided into two sections A and B.

Section A (Compulsory – 40 marks) will consist of

compulsory short answer questions covering the

entire syllabus.

Section B (60 marks) will consist of questions which

will require detailed answers and there will be a

choice of questions in this section

THEORY – 100 Marks

1. Revision of Class IX Syllabus
(i) Elementary Concept of Objects and Classes.

(ii) Values and types.

(iii) Conditionals and non-nested loops.

2. Class as the Basis of all Computation
Objects and Classes

Objects encapsulate state and behaviour – numerous

examples; member variables; attributes or features.

Variables define state; member functions;

Operations/methods/ messages/ functions define

behaviour.

Classes as abstractions for sets of objects; class as an

object factory; concept of type, primitive data types,

composite data types. Variable declarations for both

types; difference between the two types. Objects as

instances of a class.

Consider real life examples for explaining the concept

of class and object.

3. Constructors
Constructor and its types.

Default constructor, parameterized constructor,

constructor with default parameter and constructor

overloading.

4. Functions
Functions and its types

Need of functions. Types of functions (pure and

impure). Function declaration and definition, ways of

calling functions (call by value and call by reference)

Returning information/messages from the functions

and use of multiple functions and more than one

function with the same name (function overloading).

Use of static data member with static member

function. Discuss invocation of functions on objects

(through the reference). Discuss the concept of this

with a reference to the object on which the invocation

is made again.

5. Class as a User Defined Type
Class as a composite type, distinction between

primitive type and composite or class types.

Class may be considered as a new data type created

by the user, that has its own functionality.

The distinction between primitive and composite types

should be discussed through examples. Show how

classes allow user defined types in programs. All

primitive types have corresponding class wrappers.

The following methods are to be covered:

int parseInt(String s), int valueOf(String s),

long parseLong(String s), long valueOf(String s),

float parseFloat(String s), float valueOf(String s),

double parseDouble(String s),

double valueOf(String s), boolean isDigit(char ch),

boolean isLetter(char ch),

boolean isLetterOrDigit(char ch),

boolean isLowerCase(char ch),

boolean isUpperCase(char ch),

boolean isWhitespace(char ch),

char to LowerCase (char ch)

char to UpperCase(char ch)

6. Iterations.

Loops, nested loops, break and continue.

Revision of loops (while, do while and for).

Show how each kind of loop can be converted to the

other form of the loop. Introduce nested loops through

some simple examples. Demonstrate break and

continue statements with the help of loops/nested

loops.

7. Using Library Classes
Simple input/output. String, packages and import

statements. 173

family
Highlight

family
Highlight

family
Highlight

family
Highlight

family
Highlight

family
Highlight

family
Highlight

family
Highlight

Browsing the documentation for classes in the

libraries and illustrating their use. The following

functions have to be covered:

String library functions:

Char charAt (int n)

int compareTo(String1, String2)

String concat(String str)

boolean endsWith(String str)

boolean equals(String str)

boolean equalsIgnoreCase(String str)

int indexOf(char ch)

int lastIndexOf(char ch)

int length()

String replace (char oldChar,char newChar)

boolean startsWith(String str)

String substring(int beginIndex, int endIndex)

String toLowerCase()

String toUpperCase()

String trim()

String valueOf(all types)

Mathematical Library Functions:

pow(x,y), log(x), sqrt(x), ceil(x), floor(x), rint(x),

abs(a), max(a, b), min(a,b), random(), sin(x), cos(x),

tan(x).

Introduce the concept of packages and import

statement (Avoid discussing the details of libraries).

8. Encapsulation
Access specifiers and scope and visibility

Access specifiers – private and public. Visibility rules

for private, package and public access specifiers.

Scope of variables, instance variables, argument

variables, local variables.

9. Arrays
Arrays –storing, retrieving and arranging data

Arrays and their uses, sorting algorithms - selection

sort and bubble sort; Search algorithms – linear

search and binary search Example of a composite

type. Array creation. Sorting and searching

algorithms should be discussed (single dimensional

array only).

10. Input/Output
Basic input/output using Scanner and Printer classes

from JDK.

The Scanner class can be used for input of various

types of data (e.g. int, float, char etc.) from the

standard input stream.

INTERNAL ASSESSMENT - 100 Marks

Assignments and Project
The students should complete a number of laboratory

assignments during the whole year to reinforce the

concepts studied in the class.

The students should build one real life project using

the concepts taught.

Suggested list of Assignments:
Good assignments should have problems which

require design, invention of an algorithm and only

then implementation and testing. The problems will

mimic a real life problem and require careful design or

will require an interesting algorithm to solve it. They

should also embody one or more concepts that have

been discussed in the theory class. A significant

proportion of the time has to be spent in the

laboratory. Computing can only be learnt by doing.

Some sample problems are given below as examples.

The problems are of varying levels of difficulty.

1. A student has a name, roll number, class in which

studying, home address and a date of birth. Design a

class containing constructors and user define

functions, get and set – get to input data and set to

display data. . . .

2. Write a class Convert with methods as follows: a)

takes 4 arguments representing miles, yards, feet and

inches and convert them into kilometres, meters and

centimetres. b) takes an argument representing

degrees Fahrenheit and convert it to degrees

centigrade. c) a kilobyte is interpreted in two ways:

some times it is 1000 bytes (actually correct), but

often (and traditionally) it is 210 which is 1024. Similar

discrepancies arise for mega, giga, tera and peta (each

is 1000 (or 210) times the previous one).

The function should take the 103 (standard kilo) and

give the equivalent value using 210 as a kilo for all the

above. 174

3. Define a class Recurring Patterns and define

methods in it which will print the following patterns.

a) The method takes an integer argument n and prints

the following pattern, shown for n=4.

a

a a

a a a

a a a a

a a a

a a

a

b) The method takes an integer argument and prints

the following pattern, shown for n=4.

1 121 12321 1234321 12321 121 1

c) The method takes an integer argument and prints

the following pattern, shown for n=4.

abcdcba

abc cba

ab ba

a a

ab ba

abc cba

abcdcba

Note: for the three methods above you can assume

that n<10. However, think about what you would do if

you allowed n to be a 2 or even 3 digit integer.

4. Define class point to model points in the X-Y plane.

Define functions to translate a point along the X and Y

axes respectively. Define a function that calculates the

distance from another point.

5. Write a program to input two strings. Check both

the strings and remove all common characters from

both the strings. Print both the strings after removing

the common characters.

Important: This list is indicative only. The teachers

and students should use their imagination to create

innovative and original assignments.

Some Ideas for the Project:
Students have already been introduced to

spreadsheets, databases, word processors and

presentation software earlier. That familiarity should

be used to introduce the idea of how the software can

be designed by modeling it as operations permitted on

different objects. Other real world systems can also be

modeled on the same lines:

1. Calculators

2. Banks

3. A school

4. Toys

5. A game

6. Traffic lights

7. Elevators

8. Retail Outlets

9. An office

10. A company

11. Household gadgets like microwave ovens

12. Washing machines

13. Air Conditioners

14. Cars

15. Airplanes

16. Vending machines

17. Automatic Teller Machines (ATM)

18. A Social System

19. A musical composition

20. A clinical diagnostic system

Important: This list is indicative only. The teachers

and students should use their imagination to create

innovative and original projects.

Programming Project (Class X) 175

Proposed Guidelines for Marking
The teacher should use the criteria below to judge the internal work done. Basically, four criteria are

being suggested: class design, algorithm design, coding and documentation and execution. The important

questions to be asked when evaluating each criterion are shown. 25% of the total credit is assigned to

each criterion - so each is equally important. The actual grading will be done by the teacher based on

his/her judgment. However, one possible way: divide the outcome for each criterion into one of 4 groups:

excellent, good, fair/acceptable, poor/unacceptable, then use numeric values for each grade and add to get

the total which can be multiplied by a suitable factor to get the final marks.

Class design:
Has a suitable class (or classes) been used?

Are all attributes with the right kinds of types present?

Is encapsulation properly done?

Is the interface properly designed?

Algorithm design:
Is the choice of data structures proper?

Is the algorithm suitable for the problem?

How efficient is it?

Coding and documentation:
Is the coding done properly? (Choice of names, no unconditional jumps, proper organization of

conditions, proper choice of loops, error handling, code layout) Is the documentation complete and

readable? (class documentation, variable documentation, function documentation, constraints, known

bugs - if any)

Execution:
Does the program

run on all sample

input correctly?

Criteria

(Total – 40 marks)

Class Design (mm-

10)

Algorithm Design

(mm-10)

Coding and

Documentation

(mm-10)

Execution (mm-10)

Excellent 10 10 10 10

Good 8 8 8 8

Fair 6 6 6 6

Poor 4 4 4 4

